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1. Introduction

This is the final report of a project investigating the nature and development of expert-level

cognitive skills with the support of ONR Contract N00014-85-K-0524. It summarizes the

fmdings of two longitudinal studies of cognitive skill acquisition, in which the skills of the

participating individuals were subjected to detailed cognitive analyses.

The accumplithments of this project fit into three broad categories. First, it has produced

two rich databases on human expertise that trace tte transition from the novice level to some of

the highest levels of skilled performance systematically observed. Second, the analyses of the

experts' performance have added depth and breadth to our understanding of the knowledge and

memoty dynamics supporting exceptional levels of htanan performance. Third, it has

demonstrated the theoretical and practical value of the general approach to "knowledge

engineering" employed by this project.

This report first reviews the general issues motivating this research project and its

objectives. Subsequent sections summarize its main empirical, theoretical, and methodological

contributions. The final section discusses some practical implications of this work.

2. Issues and Objectives: Expertise, Knowledge, and Skilled Memory

The rtudies described here were motivated by several related issues. The objectives of this

project are reviewed in the context of these issues.

The most general goal was to refine our knowledge of what enablvi experts to perform

demanding cognitive tasks with such extraordinary proficiency that most pzople believe they

possess talents not found in the "normal" population. From an information-processing

perspective, understanding such exceptional performance involves asking questions such as:

How can we characterize experts' information-processirg capabilities? What qualitative and/or

quantitagive differences account for the typically large disparity between the performance of

experts and novices? The general phrasing of these questions assumes that certain invariants

characterize expertise and its cognitive substrate saws the variety of tasks or domains in which it

is demonstrated. Considering the fundamentally adaptive nature of human expertise, however, it

is important to question this assumption and ask if expertise has any general, context-free

characteristics. If so, what methods might be most suited to detect tbera? This project addressed

these issues by analyzing the cognitive structures and processes, psrticularly those related to

4
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memory, that support expert-level cognitive skills and their development in two domains,

mnemonic skill and mental arithmetic.

The second general goal was to analyze and describe the knowledge that supports expert

level performance in the skills studied. Three distinct lines of prior research direct investigation

to expert knowledge, its representation, its use, and its acquisition. First, there is the skilled

memoty effect, the superior memory experts typically exhibit for material fotmd in their realm of

expertise. The very restricted nature of their memory advantage relative to novice controls links

this effect to their prior experience in a particular domain. The interpretation that a higAly-

organized, domain-specific body of acquired knowledge accounts for this effect has received

substantial empirical support (cf. Chase, 1986; Simon, 1979; Tech. Rept. 89-2).

Second, the idea that knowledge is the foundation of expertise has been supported by the

capabilities of computer programs known as expert systems. Essentially, these programs codify

and use knowledge extracted from human experts in domains such as medical diagnosis, chemical

analysis, and computer system configuration to perform problem-solving and decision-making

tasks at levels at or near those of human experts (Duda & Shortliffe, 1983). Although these

systems may not represent, store, and operate upon this knowledge in ways that human experts

do, their capabilities show that the knowledge at their core is sufficient to produce expert

performance (Feigenbaum, 1989). 'Third, Chase & Ericsson's (1981, 1982; Ericsson, C. 'se, &

Faloon, 1980) longitudinal study of the acquisition of mnemonic expertise directly linked

acquired knowledge to unquestionably exceptional performance. Collectively, studies of the

skilled memory effect expert systems, and the acquisition of cognitive skill converge upon the

conclusion that knowledge, rather than general aptitudes or talents is the foundation of expertise.

This conclusion leads to a theoretical problem and another objective: to identify and

describe memory structures and processes that mediate experts' application of knowledge. This

problem is called the "paradox of expertise" (Barsalou & Bower, 1984; Smith, Adams, & Schorr,

1978; Posner, 1988). The issue is to reconcile experts' effective and efficient use of a large

knowledge base with the well-documented limitations that components of the human memory

system impose upon information processingcapacity (Miller, 1956; Shiffrin, 1976; Simon, 1976).

This issue lies at the heart of Simon & Chase's theory of expert skill (Chase. 1986; Chase &

Simon, 1973a, 1973b; Simon & Chase, 1973; Simon & Gihnartin, 1973; Simon, 1979) and its

offspring, the framework of theoretical principles that consititute skilled memory Jeory (SMT)
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(Chase & Ericsson, 1982; Technical Report 89-1). Sharing several key assumptions of its

precursor, SKr seeks to explain aspects of expert performance related to memory dynamics for

which the Chase-Simon theory could not account. Key objecdves of this project were to evaluate

SMT's explanation of the paradox of expertise, particularly its generality, and bezter understand

the cognitive structures and processes that implement skilled memc -y in specific expert skills.

2.1. Principles of Skilled Memory

RAT postulates that expert-level performance depends upon experts' efficient use of a vast,

domain-specific knowledge base. This implies that an expert's knowledge base contains more

than just content knowledge; becoming an expert also involves developing memory management

skills. SMT asserts that through extensive practice in a particular domain, experts acque

knowledge structures and procedures for efficiently encoding and retrieving task-relevant

information in long-term memory (LTM). Three general pthrciples describe how experts use

memory efficiently to excel in their particular domains.

The Mnemonic Storage Principle states that experts use abstract, semantic memory

structures developed through extensive experience to quickly recognize and encode familiar

patterns of Worn:ration and maintain that information for later use. This principle essentially

states that chunking is a mechanism experts use to process large amounts of information in a

limited capacity STM. Studies of expert mnemonists (Chase & Ericsson, 1981, 1982; Ericsson,

Chase, & Faloon, 1980) and experts from domains such as chess (Chase & Simon, 1973a, 1973b),

tridge (Charness, 1979j, the games of go (Reitman, 1976) and gomuku (Eisenstadt & Kareev,

1975), electronics (Egan & Schwartz, 1979), architecture (Akin, 1982), and computer

programming (McKeithen, Reitman, Rueter, & Hirtle, 1981) support this generalization. All

suggest that experts use knowledge acquired through years of practice in a particular domain and

stored as organized units in LTM to encode large mounts of information economically

The Retrieval Structure Principle states that experts use their acquired understanding of

the material and tasks of a particular domain to create mechanisms for indexing chunks of

information in LTM in a way that facilitates their orderly recovery. Retrieval structures are

memory mechanisms that govern organized storage and retrieval of content information by

"addressing" information at the time of storage to provide a systematic means of later retrieving

it Their function is analogous to that served by catalogue systems used in libraries or filing
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systems used in offices. Retrieval structures represent &min; solution to the problems of

explaining the large number of chunks (sometimes in excess of the storage capacity of STM) that

experts can quickly store and easily retrieve in a prescribed order.

Finally, the Speed-Up Principle states that the speed and reliability of both memory

encoding (i.e., chunking and LTM indexing) and retrieval processes increases with practice.

Assuming that LTM storage and retrieval times decrease continuously with practice (Piro lli &

Anderson, 1985), this principle implies that with sufficient practice experts can store and access

virtually =limited amounts of information in LTM with the speed and reliability normally

associated with STM storage and retrieval.

How does the development of highly efficient LTM encoding and retrieval processes relate

to skilled performance? Theoretically, efficient and reliable storage and retrieval processes

enable experts to circumvent basic information-processing limitations, particularly limited STM

capacity and relatively slow LTM encoding processes (Simon, 1976), that severely constrain

novice performance on most complex tasks. In effect, the development of skilled memory

enables experts to increase their working memory capacity for familiar materials. Increasing the

amount of information available for processing and the speed at which it can be'accessed should

increase the overall processing capacity of a system per unit of time. To the extent that complex

cognitive skills require the appropriate sequencing of elementary cognitive orerations, skilled

memorY theory, through its postulated retrieval structure mechanism, suggests a means by which

efficient procedural control is achieved. The enhanced processing capacity predicted by SMT is

consistent with the speed and accuracy that typifies expertise in complex cognitive skills.

3. The Training Studies

Two longitudinal studies of the acquisition of cognitive skills have been completed under

this contract. The first focused on the skill of an otherwise normal subject (DD) who increased

his digit-span to over 100 digit with 4.5 years of practice using the mnemonic system invented by

Chase & Liicsson's SF. His level of performance is the highest ever observed on this task,

exceeding by more than a order of magnitude the performance of normal subjects. Because prier

analyses of DD's skill had established that his performince was consistent with the principles of

skilled memory, investigation focused on analyzing the mechanisms underlying his skill, their

properties, rad their interaction.

7
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The second study followed two college undergraduates who became mental calculation

experts by practicing for three to four years with strategies preferred by previously studifai

experts. This study represented an important step in generalizing SMT; its aim was to test bow

well predictions derived from SMT could account for expertise in a task where superior

information retention is not the principal goal, but is necessary for fag and accurate performance.

Analyses of their skills have added depth and breadth to our unthrstanding of expertise, its

cognitive foundations, and, especially, skilled memory and its role in expert performance.

The main empirical fmdings of these studies are summarized following a brief description

of the training procedures used.

3.1. Practice Regimens

3.1.1. Digit-Span Trafning Study

DD's practice regimen involved practicing the standard forward digit-span task under

laboratory observation 3 to 5 days per week. He began training with as many as 26 trials per 45

minute session, however the number of trials per session gradually decreased as is span and the

duration of each trial increased. For more than 60% of his 1079 practice sessions, he received 3

trials per session.

'The rtp-clown" procedure was used to measure DD's span (Ericsson, Chase, & Faloon,

1980; Watkins, 1977). Under this procedure, span is measured as the longest list that can be

recalled on 50% of the trials. Each trial begins with an experimenter giving DD the length of the

forthcoming list. Once DD indicates he is ready (after a brief period of preparation), the list is

read to him at a rate of one digit per second. Following a interval of silent list rehearsal, he

begins his serial recall. If his serial recall of a given list is correct, one digit is added to the length

of the list presented ur his next trial. The next list is reduced try one digit if DD's serial rem, is

not perfect.

In most practice sessions, DD provided a verbal report of how he encoded the items in each

list immediately followtag his serial recall. After the last digit-span trial, each practice session

ended with a free recall task. Here, DD was asked to recall as much material as he could from the

previously presented digit lists iu any order. All sessions were recorded on audio tape.
t,
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Throughout DD's training, experimental sessions were frequently inserted in place of

prActice sessions. These sessions were used either to conduct exploratory and more formal

hypothesis-testing experiments or collect concurrent verbal protocols.

3.1.2. Mental Calculation Training Study

Two undenraduate volunteers, GG and JA, routinely practiced mental multiplication under

laboratory observation for approximately 1/2 hour per day, 3 to 5 days per week. JA attended

268 sessions for approximately 175 hours of practice over a 3-year period. Over 4 years GG

accumulated 618 sessions resulting in about 300 hours of practice. Practice consisted of solving

multiplication problems using an unconventional, general computational strategy employed by

the majority of expert calculators whose methods for multiplication have been documented. The

trainees' practice sessions were frequently augmented or else replaced by sessions in which either

verbal protocols were taken or experiments were conducted.

In practice sessions two manipulations were used to systematically vary the memory

demands of the multiplication problems giver. These manipulations involved independently

varying problem size and presentation conditions. To vary problem size, the trainees regularly

practiced on problems whose multipliers were either one- or two-digit numbers and whose

multiplicands ranged from one to five digits in magnitude. These manipulations produced the

nine problem-size categories shown in Table 1. All roblems were randomly generated and

presented in blocks containing one problem from each size category.

Two modes of problem presentation were employed, oral ard visual. In the oral condition,

problems were read to the subjects. After receiving a subject's ready signal, an experimenter 1)

would read first the larger of the operands of the current problem, pause for approximately two

seconds, and then give the word limes" followed by the second operand. The operands of

visually presented problems were typewritten in the center of 3 x 5 cards, according to the display

cotriention shown in Table 1. The g would simply display the printed card face to present a

problem to the subject in the visual-presentation condition.

AL additional procedural difference distinguished the two presentation conditions. Visually

presented prcblems remained displayed until the subject either gave an answer or gave up. Thus,

problem operands were available throughout the course of computation in the visual condition,

whereas oral presentation required subjects to maintain both operands of a problem in memory to



7

solve the problem successfully. The extra memory load imposed by oral proNem preseptation

was expected, therefore, to increase problem difficulty.

One further manipulation was employed as an instructional intervention. It involved only

one of the trainees (GG) and occurred after he had practiced for 500 sessions. Problem-by-

problem analyses of the procedures used by the trainees showed that the general algorithms they

used to perform 2x multiplication differed both in computational complexity and in the memory

demands they imposed. Process models of the trainees' procedures (discussed below) confirmed

these findings; JA had devised and used a general algorithm fa two-place (2x) multiplication that

was more efficient than GG's. In an instructional session between ciG's 500th and 501st practice

sessions, JA's strategy was explained to GG and he was told to apply this strategy to all 2x

problems he received in subsequent practice sessions. This experiment provided an opportunity

to study the flexibility of a heavily-practiced skill and test the validity of the model on which this

intervention was based.

3.2. Expert Performance: Some Empirical Generalizations

Figure 1 slx)ws the digit-spans c DD and Chase & Ericsson's SF as a function of practice.

Notice the spans of b,th individuals at the beginning of practice; 'both fall within range epected

for normal adults ot 7 plus-or-minus 2 digits (Miller, 1956). Over the course of practice, DD

increased his span to 106 digits. To put his performance in perspective, DD's span exceeds the

average nornal span by approximately 50 standard deviations. DD's span exceeds SF's span of

84 digits by roughly 25%. There is no evidence that DD's span represents an absolute ceiling on

his performance. In sessions testing DD's supraspan serial recall capabilities, he has recalled lists

as long as 110 digits perfectly.

DD's mnemonic skills have been compared to other mnemonists on another benchmark

memory task. The Luria Matrix (Luria, 1968) is a memory task that has been used to assess the

skills of several exceptional mnemouists (Ericsson & Chase, 1982; Hurt & Love, 1972). The

matrix is a symmetric display of 50 random digits arranged as shown at the top of Figure 2. On a

test trial subjects are given the matrix to study for a series of serial recall trials that follow. These

trials involve recalling either all of the matrix elements or a specified subset of elements in a

prescribed serial order. The vssious recall tasks are shown in the lower half of Figure 2.

Subjects' instructions are to minimize stud time on the matrix without sacrificing accuracy in the
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,

After over four years of practice on the digit-span task DD was tested on the Luria Matrix

over 12 consecutive sessions. He received four matrices per session. After study of each matrix,

upon his signal the matrix was removed and he received six consecutive recall trials of its

contents. The first and last were always "entire matrix" trials. The intervening trials contained

the remaining partial recall trials, their order being counterbalanced across all matrix

presentations and unknown to DO fcr any given matrix.

DD's performav;e in the testir.z sess; ws was impressive. His recall performance averaged

983% correct for his first recall of the entire matrix across all sessions. His mean accuracy over

tsa: remit:ming recall tasks (second column down, third column down, third column up, zig-zag,

2n,1 entire matrix recall) was 993%. His mean study time along with his mean recall times for

each of t...... recall tasks' are given in Table 2 along with similar =mares of performance taken

from expen and novice subjects. His superiority on all measures indicate that his skill is not

limited to the digit-span task, and shows some flexibility. In general, the data indicate that DD'r,

mnemonic capabilities represent the peaks of human memory performance.

Turning to the results of the mental calculation training study, Figure 3 and Table 3,

respectively, show the improvements in the trainees' speed and accuracy for problems differing in

size and mode of presentation. Figure 4 compsres their final solution times as a function of

problem size and presentation mode against the performance of a mental calculation expert (AB)

independently regarded as one of the world's best2. In short, both GG and IA have achieved

levels of performance that qualify them as experts.

The achievements of DD, GG, and /A are important in several respects. First, they provide

infmmation about the relative contribution of different variables to the acquisition of expen-lev 1

cognitive skills. Second, they show that expertise can be acquired with less than a decade of

practice. Third, they demonstrate that interventions that teach expert strategies can facilitate the

development of expertise. Fourth, the databases describing their performance and learning

represent bencinarks for testing recently-proposed global tonnes of human cognition.

Neither DD, GO, or IA began practice with any identifiable exceptional intellectual

1The tine listed for entire matrix recall reflects his first nisi. His second recall of the entire manix averages 10
woods famer.

2All three show comparably low overall enor ratu.
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abilities, talents, or cognirive capacities. Their achievements, along with other recent studies of

expert performance (Ceei & Lacer, 1986; Schneider, Korkel, & Weinnt, 1989) indicate that such

predispositions, particularly 'aigh levels of plural intelligence, are not essential for acquiring

expertise. Rather, the changes observed in performance as a function of practice support the

claim that practice is the key variable, as Simon & Chase (1973) argued nearly 20 years ago.

This conclusion does not deny the importance of other variables. Individual differefices in

aptitudes and previous experience in related doinains may well differentially affect rates of skill

acquisition or determine peak performance levels. This is an issue that calls for systematic study.

Motivation is an important variable (Cbarness, 1989); subjects who devote years of practice to

any demanding task are obviously very highly motivated.

By the standards of most psychological studies, the duration of these training studies is

long, however tlx: amount of practice needed by the trainees to become experts is short by

standards found in the literature on expertise. For instance, Van Lehn (1989) states that the label

expert is usually reserved br individuals with several thousand hours cf experience. Hayes

(1985) has argued that a minimum of a decade of practice is necessary to become a world-claa

expert Differences among tasks, sutject differences, and differential training conditions caution

against making broad generalizations about the amount of practice needed to become an expert,

however the results of the digit-roan and mental calculation training studies reveal that the

investment cf time, effort, and resources required to achieve e7pert-level skills is not as great as

prior studies suggest.

The training studies show that the processing snategies subject practice are important

determinants of their learning and performance. This bolds true whether the strategies are

discovered by the subjects or explicitly taught to them. In both the digit-span and mental

calculation studies, DD, GG, and JA were instructed to use strategies known to be used

effectively by previously studied experts. Additional subjects also originally involved in these

studies were observed as they practiced under idendcal conditions. They were instructed to use

different strategies, however. all subjects showxl improvement, none using the strategies

predicted to be less effective progressed much, either in terms of practice or performance, rektive

to the those given the expert strategies

For instance, at the game time DD began practice, Chase & Erirsson (1982) also gave

another subject extended practice on te eigit-span task. She was given a strategy that promoted

1
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the encoding of digits as meamngful chunks, but did not lead to the development of a retrieval

structure. Her span improved at a rate comparable to SF's and DD's, but she hit an asymptote at

18 digits, grew frustrated, and quit practicing.

The mental calculation study orginally began with 6 subjects (Staszewski & Chase, 1984).

Using random subject assignment, three were instructed to use the taditienal right-to-left

procedure, whereas (3G, JA, and another were assigned the left-to-right strategy. Although large

individual differences were evident in subjects' performance, as a gronp, subjects in the right-to-

left condition were slower and less accurate than their cohorts and the marginal advantage for the

left-to-right group increased as demands related to problem size and presentation mot.:.. increased.

Subjects in the right-to-left group also expressed more frustrition than than those in the left-to-

right condition. Two of the right-to-left trainees quit before completing 12 sessions and the third

completed only 22. Although the low number of subjects involved and lack of control of over

other subject factors make it difficult to unambiguously attribute the achievements of DI), GG,

and JA to the strategies they were given, the pattern of subject performance, attrition, and

strategies obszrved in these studies suggests they played a very impottant role.

The clearest evidence that strategy-based interventions facilitate the develooment of

expertise is the improvement observed in GG's performance following his ittroduction to and

adoptice of JA's 2x computational strategy. A significant feature of this intervention is that it

was applied at a relatively advanced stage in GU.; training. Its success demonstrated that a

heavily practiced performer can learn and bend: cam new and effective strategies, without

suffering the heavy negative transfer that some stuoies of skill acquisition have found (Shiffrin &

Schneider, 1977).

One further accomplishment of this project is that it has contibuted two large and rich data

sets to the empirical database or, human expertise and its acquisition. Studies of human expertise

have bad a tremendous impact on cognitive theory and research over the past twenty years,

however the data base on which our understanding of expertise rests is disproportionally small.

The scarcity of expert subjects and the time and resources requnod to thoroughly analyze their

skills explains this situation. The datasets from these studies add significantly to the experise

database, containing quantikoere and qualitiative measures of the trainees' practice performance

(including chronometric, error, and verbal report data) covering thousands of practice trials.

These databases not only 4escribe human performance at some of the highest levels ever

systematically observed, they also describe the learning that led to these levels.

13



z

11

The availability of these databases is particularly relevant to the emergence of "cognitive

architectures" in cognitive science. Exemplars include ACP (Anderson, 1983), SOAR (Newell,

Rosenbloom, & Laird, 1989), ICARUS (Langely, 1989), and connectionist architectures

(Rumelhart & McClelland, 1986). Implemented as simulation systems, these architectures

represent general theories of human cognition designed to account los human performance and

learning over a wide range of tasks. Their validity as general theories of cognition rests largely

on the range of cognitive performance which they can accurately modeL Because the databases

built up in this project describe extremes of human learning and performance, modeling its

findings represents an acid test of current and future architectures.

3.3. Cognitive Foundations of Skilled Memory

33.1. Expertise, Knowledge, and LTM

The fundamental assumption underlying the concept of skilled memory is that

iprovements in paformance as a result of practice are due, at least in part, to subjects'

increasily efficient use of LTM o encode, maintain, and retrieve information critical for

successful task performance. SMT asserts that experts expand working memory capacity by

learning to use circumscribed portions of LTM to maintain information needed for future

processing in a readily accessible state. Organited lmowledge acquired through practice in

specific tasks or domains mediates experts' LTM encoding and retrieval processes. Evidence

supporting these assertions is described in the following sections.

Support for the LTM Storage Hypothesis

Evidence that LTM, rather than STK is the locus of DD's list storage comes from several

sources. One is his performance on the final free recall task that concludes each of his practice

session. He recall for the contents of the lists presented in these sessions is impressive (Mean at

93%, SD ix 4%) This level of retention is clearly inconsistent with dria on STM forgetting

(Brown, 1958; Murdock, 1961; Peterson & Peterson, 1959) and quite consistent with the skilled

memory effect. Enduring knowledge representations are predicted, if information is encoded in

Further eviuence for LTM storage comes from an experiment using a variant of the Brown-

Peterson distractor paradigm. In this experiment DD was given digit-span trials in which lists

14
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either 25, 50, or 75 digits3 long were read to him at the rate of one per sec. Unlike usual practice

procedures which allowed DD to initiate serial recall when he was ready, a distractoi task

involving visual search was interpolated between list presentation and DD's serial recall. The

distractor interval lasted either 1, 2, or 4 min. Results showed no effect of the distractor upon the

accuracy of DD's serial recall, regardless of its duration. las accruicy averaged 99, 98, and 95

percent correct for 25-, 50-, and 75-digit lists, respectively.

Finally, some compelling evidence for DD's storage of lists in LTM comes from a study

testing his memory for a 100 digit-list after a 24-hour intervaL Following two consecutive days

without practice (to minimize intaference from previous days' lists), DID was presented with a

100-digit list in what he assumed was a normal practice session. After his perfect serial recall of

the list, the experimenter feigned an equipment problem to end the session. The next day DD

arrived for practice at the same time as he had the previous day. To his surprise, he was askat for

a serial recall of the list he had received the previous day. He recalled 99 of the digits in their

appropriate locations. When told his recall was incorrect, he spontaneously identified the

incorrect digit and its location, and gave the correct one. He theu reported that during retrieval,

he had narrowed search to two candidates, but not sure which was the correct digit, he guessed.

Variants of the traditional memory span testing paradigm have produced results that rule out

the counterarginnent that DD does not store information in LTM, but, rather, has somehow

expanded STIvi capacity. If this argument were true, his span for all matmials that he encoded in

STM should be enhanced. Howeve-. when either alphabetic symbols or words are read to DD at

the customary one per sec rate, his span4 for these materials resembles that of unpracticed

z.ibjects (Crannel & Parrish, 1957). It is also known that STM retention is minimatly affected by

changes in item presentation rate relative to the large adverse effects that speeding up item

presentation has on LTM eiroding (Glanzer & Canitz, 1966; Murdock, 1962). When DD's span

was tested using digits presented at a rate of four per second instead of the customary rate, his

span meastnd at 10, an order-of-magnitude decrease from the span exhibited under normal

practice conditions. These sizeable reductions in his memory span with changes in either

materials or presentation rates indicate a high degree of specificity to the conditions of practice.

3DD's span at the time of this expaiment wu in excess of 100 digiu.

*The up-down procedure was also employed for all experiments measuring DD'smemory span.

1 5
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Consistent with the principles of skilled memory, results from free recall and recognition

tasks show that expert mental calculators also use LTM to store vital information during their

corganations.

One of the procedures for testing GG's ;ad JA's LIM retention was simile/ to that used in

testing DD's final free recall. After solving the final problem of a practice sessim. the Vainees

were asked to recall as many of the problems presented in the session as accurately as possible.

For most sessions, advance nolice of the recall task was given prior to the start of calculation

practice. On a number of occasions, the trainees received no advance warning. A problem was

scored as correctly mallet. if the manber of digits in both opera. 's was correct and 50% or more

of the digits were given in their proper places.

The trainees' recall performance was consistent with the predictions of SMT. Recall testing

began after GG had accumulated 9.? practice sessions and JA 136. In the initial testing sessions,

GG recalled an average of 31% of the problems presented in the course of a practice session and

JA recalled 37%. With further calculation practice, JA's recall gradually rose to 46% near the

end of his training and GG's reached 61%. Consistent with studies of experts' incidental memory

(Lane and Robertson's (1979); DD's 24-h9ur delayed =all cited above), the trainees' level of

recall was unaffected by whether or not they knew they would be tested for recall on a given day.

Although their ability to recall problems supported the LTM coding hypothesis, it was

bothersome that the amount of material GG and JA could recall was =A relative to the amounts

recalled by SF (Chase & Ericsson, 1982) and DD in post-practice free recall. A plausible

explanation was that the problems presented to the trainees in the course of a practice session

(and the memory representations generated in solving them) interfered w!th their recall of

infommtion from previously presented problems. This account was supported by an analysis that

showed that the probability of recalling a problem increased as a function of its presentation order

within a session for both trainees. In light of this interference, a recognition task was used as a

more sensitive means of testing the calculators' reliance on LTM storage. Following each of two

practice sessions, GG, JA, and AB5 were presented with a set of 108 problems aad asked to

differentiate between those presented in the immediately preceding practice assion and those

drawn from a randomly-generated set of distractors. Results showed that the subjects could

easily distinguish old problems from new on the majority of trials (GG 92%, JA 87%, AB 82%).

5The wodd-ciau calculator whose calculation skill served as a basis for comparing the trainees' performance.
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Consistent w''h the knowledge-based coding hypothesis, evidence for practice-specilic

memory coding skills is also shown in expert mental calculation. Although GG solves 2x4 and

25 problems faster and more accurately than AB, his advantage does not extend to larger

problem sizes. In other words, GG's expertise is limited by his experience; his performance falls

when he is presented with problems larger than those regularly received in practice sessions.

This specificity is shown to GO's performance on randomly generated 3x3s and 4x4s,

problem sizes which AB practiced reett'a4, bin GG had rever practiced. Tested on 3x3s, GG's

average solution time for 12 problems (Mean = 4123 sec, SD = 25.78) was almost double that of

AB (Mean = 21.69, SD = 17.43), while showing comparable accuracy. Presented with eight 4x4

problems, GG experienced extreme difficulty and quit computation before reaching an answer on

all but the last two. He correctly solved only the last one. His computation times exceeded five

minutes on ali of the 4 x 4s, and his overt behavior on all but te last trial resembled that of a

novice struggling to solve a 2x5. On all but the last two trials, GG cited memory overload as the

reason for faihre, stating specifically that he "didn't have the right schemes for finding and

maniplatal the nImbers." Significantly, after his attempt on the next-to-last 4x4, the first one

for which he reached an answer, he reported discovering an effective representational scheme.

His successful solution of the final 4x4 confirms his report.

In general, the evidence for LTM storage and the specificity of superior retention skills

observed in these studies supports key assumptions of SMT. These findings, along with the

generality of the skilled memory effect, suggest that experts in a wide variety of other domains

strategically use knowledge to represent and maintain task-relevant information in LTM.

3,3.2. Mechanisms of Skilled Memory and their Impkmentations in Expert Skills

smr asserts that two types of memory mechanisms mediate experts' LTM encoding and

retrieval: semantic memory representations that recognize and encode information as meaningful

chunks and retrieval structures that indcz chunks in LTM in a way that facilitates their later

retrieval in the appropriate serial order. It asserts that these mechanisms develop with practice,

anti, once they are established, further practice increases the efficiency with which they are, used.

The following sections review the evidence that skilled memorj supports the remarkable

performance of DD, GG, and A and, in the process, describe how its component mechanisms are

implemented by these subjects.

17



En tional Memory Skill: Structure and Process

Substantial progress has been made in developing an infonnation-procesdng theory of

DD's skill. A variety of studies were performed to analyze the encoding operations he employs

during digit-span trials, the representations he creates, and the processes he uses to retrieve

information from LTM. Their fmdings have led to the identification of Imowledge stmctures that

mediate DD's encoding and retrieval operations as well as a fairly detailed description of the

functional organization of these components of his skill and the nature of their interaction.

In theory, the key to DD's exceptional memory is his ability to quickly create elablrato,

organized, information-rich LTM codes for the short 3- or 4-digit sequences into which he

systematically parses digit lists and (b) and to access these representations for orderly retrieval.

These encoding and retrieval operations are inter-related and mediated by three types of

knowledge ntructures in his knowledge base. These mechanisms are identified as (a) his semantic

coding system, (b) his retrieval structure, and (c) his contextual coding system.

The contents of Tables 4 and 5 provide a concrete context for describing these mechanisms

and their role in DD's performance. These tables contain verbatim 'transcriptions of verbai

reports given by DD after digit-span trials in which he perfect recalled a 75- and a 50-digit list.

For sake of exposition, the left-hand column of numbers in each table displays the contents of

each list organized according to their grouping in each report. In these reports, DD describes how

he encoded the elements of each list.

DD's reports reflect both how he organizes his encoding and serial recall of digit lists as

well as the mechanism that imposes a common structure on both of these processes. As his

reports show, DD's basic unit of encoding is a digit group, either three or four digits in size.

These protocols reveal regularities in his formation of digit groups that generalize far beyond

these particular lists.

A salient feature of Tables 4 and 5 is the redundancy in DD's list parsing. Examination of

the arrangement of digit groups in these protocols reveals an abstract hierarchical scheme of

organization. As these reports show, DD's digit groups are arranged in sequences of uniformly-

sized groups, sometimes four, but mostly three groups in length. These sequences form higher-
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order units labeled "supergroups." SIM higher-order units, called "supergroup clusters" pair

supergroups made of 3-digit groups and 4-digit groups. The scheme for organizing these units is

clearly illustrated in Table 4. This protocol shows that DD organized the first 16 items of this

75-digit list as a single supergroup composed of four consecutive 4-digit groups. The next 21

digits represent his first supergroup cluster. It consists of a supergroup of three 3-digit groups

followed by a supergroup of three 4-digit groups. The supergroup cluster pattern is repealed

again, and once again, albeit incompletely in this list. Table 5 shows that the same organizational

scheme is applied to a 50-digit list for as far as its dirAs extend.

The common structure that these lists share is neither coincidental nor idiosyncratic to these

particular lists. Analyses of DD's protocols, analyses of his errors on digit-span trials, and

chronometric analyses of his list encoding, serial recall, and memory search (Tech. Rept., in

preparation-a) show that the organization of the lists shown in Tables 4 and 5 reflects a general

organiimg strategy based on an abstract, hierarchical structure. A variety of studies presenting

DD with 50- and 75-digit lists showed that he uniformly applied the orpnizational schemes

instantiated in these protocols. Throughout his training he also applied this general scheme to

lists larger and smaller, truncating or adding abstract organizational units as the length of the

particular list dictated. The uniformity of this scheme across different list Iengths can be seen in

Figure 5, which graphically represents his organizing schemes for lists 50, 75, and 100 digits

long.

The mechanism underlying DD's organization of lists is called a retrieval structure.

Essentially, this mechanism operates as a memory indexing system. It is used by DD to store

semantically encoded digit groups in LTM in a way that (a) :aaintains the ordinal relations

between the groups and (b) supports a systematic retrieval strategy. In general, DD's retrieval

structure anticipates the problem of retrieving a Irxge number of coded digit gmups from LTM in

proper order and encodes these items so that processes governed by this mechanism can access

them.

To make the concept of an indexing system more cotcrete, consider some common

examples: postal systems that organize mailing addresses, lib-ary systems (e.g., the Dewey

Decimal System) that specify the locations of books in a library, and address systems used to

locate a particular piece of information in the memory of a digital computer. All of these systems

defme locations within an abstract relational scheme where a particular content can be

1 9
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"delivered," stored, and later accessed. The key to their effectiveness is that some "content" is

stored and addressed according to a stable system, so that knowledge of the addressing system

later mipports organized search and efficient retrieval.

The nviemonic system known -s the method of loci represents a specific memory indexing

sysiem that has several of the basic properties that characterize DD's retrieval structure.

Individuals using this method memorize lists of items by fust forming an image of each to-be-

remembered content item and then associating each image with 3 predetermined physical location

found in a well-known physical environment. Retrieving :lie stored items involves mentally

traversing the path connecting the locations and "picking up" the content associated with each

location. In theory, recalling each location provides a set of cues for recalling the associated

items. The key parallel between this system and DD's is that a familiar, sy=natically organized

body of knowledge, whether it be of a physical environment or an abstract set of relations,

coordinates the storage and retrieval of information.

h essence, retrieval structures are mechanisms that organize and coordinate encoding and

retrieval processes. They combine a well-structured knowledge base with processes that operate

upon this knowledge to systematically generate "addresses" for storing information. These

'addresses" consist of abstract features associated with to-be-remembered content at the time of

storage. At the time of recall, the retrieval structure is again invoked to systematically regenerate

the game addresses, which then serve as retrieval cues for accessing the stored information.

Using the method of loci example, this translates to using a familiar path through a familia

region to generate the imaginal locations to which to-be-remembered items are associated. Te

retrieve the stored items, one systematically regenerates the sequence of locations to access their

associated content.

Evidence for these claims about retrieval structures and their role in DD's skill come from

investigations of his performance on several tasks (Tech. Rept. 89-1, in preparation). For

example, protocol data like those in Tables 4 and 5 were used to generate models of retrieval

structure organization and which were then validated using chronometric analyses of DD's serial

recall: This work showed that DD's serial recall for lists of varied length was organized in the

manner predicted by the structural models. Application of these same models to temporal

patterns obtained from studas of self-paced list encoding showed that the same structures were

used to organize DD's list encoding. The isomorphic relation between DD's list encoding

20
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processes and his retrieval processes for serial recall was also shown by substantial correlations

between the pauses in DD's list encoding and the pauses in his serial recall of individual digits at

idattical list locations. The additional finding that the temporal patterns that characterize both list

encoding and serial recall are highly intercorrelated over the overlapping portions (4. different-

sized lists supports the claim that a single, general retrieval structure is used consistently.

The idea that digit groups are addressed in L.TM with a unique set of features that identify

their relative location within DD's retrieval structure has been tested in several ways. in general,

this view implies that encoded digit groups are relatively independent of one another in memory

and leads to the following prediction: given the location or address of a digit group within a list

of specified length, DD should be able to both encode and retrieve the digits associated with that

location flexibly. Two experiments were performed that tested this prediction.

In the first, lists 25 and 50 digits long were presented to DD under self-paced conditions.

One digit was presented at a time on a CRT and remained displayed until a response from DD

displayed the next digit. The digits were not presented in the order in which they were later to be

recalled, however. Rather, a graptiic representation of his retrieval structure was displayed and a

pointer indicated where a pcticular sequence of three or four digits belonged within this

structure. For each location, the sequence of digits was given in the order in which they were to

be recalled. The order in which the locations were presented for study on each trial varied

randomly. Following the "mixed" presentation of digit groups of each list, DD was asked to

recall the list as he usually would, first with the initial four groups of fouk digits, the next three

groups of three digits, find so forth. Despite '`ae novelty of these list display procedures, DD's

serial recall for 25- and 50-digit lists averaged 95% correct. This result is consistent with the

hypothesized independence of retrieval structure locationc and demonstrates this independence in

itceding.

A memory search experiment modelled on Sternberg's (1967) memory scanning paradigm

demonstrates similar flexibility in retrieving digit groups (Tech. Rept. in preparation-a). In this

study DD received 50-digit lists read at a rate of one digit per sec. Fel:owing list presentation, he

was given a series of cued recall trials. These trials presented :Ugh groups from randomly

selected rec.:NW structure locations as cues. Depending upon the search condition specified prior

to list prwentation, DD's task was to give the entire digit group that either preceded or followed

the cue in the list. Results showed that DD retrieved the correct digit group on 94.4% of trials.
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This level of accuracy compares with the accuracy with which novices retrieve information from

STM (Sternberg, 1967). Analysis of both response latencies and posttrial protocols showed (a)

that the pattern of DD's latencies was consistent with a model of retrieval that usumes retrieval

structure mediation and (b) that DD could ust the cued information to directly access information

specifying cue locations.

To summarize, evidence from a variety of tasks and measures provides support hypothesses

about the form and function of retrieval structures.

Semantic Encoding: A Chunking System

Another salient feature of DD's list encoding that is evident in Tables 4 and 5 is his

categorical labelling of el411 dii,.t group. Essentially, his representation of each group in terms of

either a running time, an age, date, or miscellaneous patteta reflects his imposition of subjective

meaning upon othe.wise random information. The advantage of making meaningless informatian

meaningful has been known since the time of Ebbinghaus (1964, originally published 1885) and

is well-established experimentally (Crowder, 1976). Not surprisingly, this general strategy has

been identified as one commonly used by exceptional mnemonists whose memory skills have

been studied under laboratory conditions (Ericsson, ,T85). The implication is that these memory

experts can quickly relate new information to existing knowledge to exploit information in LTM

as a mnemonic aid.

One of the noteworthy accomplishment of this project is the detail in which it has analyzed

DD's semantic coding processes End their underlying knowledge. We have found that DD's

ability to create a meaningful memory representation for any random digit sequence he

mounters is supported by an elaborate, semantically-rich, hierarchically organized knowledge

base whicn at-z supports muitiple retrieval strategies.

How can DD's memor; representations be characterized in terms of structure and content?

His protocols reveal that he uses a mall set of abstract coding structures to encode digit groups.

These structures are presented in Table 6. The content these structures take is presented in Table

7, which shows the semantic categories that he uses to give coherence and meaning to otherwise

meaningless digit sequences.
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The protocols in Tables 4 and 5 clearly indicate that DD's encoding of digit groups in terms

of their semantic content involves more than simply assigning a category label to a digit group.

Rather, they show that he frequently assigns a number of meaningful features to create a well-

elaborated representation for a digit group. For instance, he diztinguishes the sequence 420 not

tat as a 1-mile time but as "a good higb school mile time." He encodes both 6938 and 5802 as

10-mile times, but differentiates between them by noting that the former is "a really slow 10-

mile" whereas the latter is "a good pace 10-mile." The sequence 142 is represented as a 1/2-mile

time, "right around tbe world record." The sequence 063 is encoded not juzi as an age, but as an

age "right around retirement time."

The beneficial effects of meaningful elaboration upon recall are well established (Bobrow &

Bower, 1969; Craik & Lockhart, 1972; Hyde & Jenkins, 1969; Stein & Bransford, 1979). In

theory, there are several advantages. First, elaborating a representation enhences the probability

of recall by increasing the number of potential retrieval cues (Tulving & Thomson, 1973) or paths

(Anderson, 1983; Anderson & Reder, 1979) that can be used to retrieve a stored representation.

When several representations share features that raise the threat of interference, the presence of

distinguishing features reduces this threat. It appears, however, that there is another feature of

DD's semantic encoding that contributes to his superior recall performance 'This is the elaborate

organization of his semantic knowledge base.

Several sources of evidence suggest that DD's semantic knowledge base is organized along

the lines of the semantic network pictured in Figure 6. One sou.ce of support for thia

representational hypothesis comes from his protocols. The elaborations that frequently qualify a

general category label suggest that DD uses a multileveled hierarchy of conceptual categories to

encode digit groups according to their membership in a set of stable, well-defmed classes.

Supporting evidence comes from the organization of DD's recall on the free recall task that

concludes digit-span practice sessions. Analysis of his recall protocols shows that his recall is

organized by his semantic encoding categories. The initial digit groups he reports are those

encoded as 1/4-mile times. When he can recall no more 1/4-miles, he then turns to recalling

1.12-mile times, again reporting as many of the digits zroups coded with this label as he can. He

then proceeds to recall 3/4-mile times, 1-mile times, 3-kilometer times, proceeding through the

coding categories in the order in which they are listed in Table 7. Analysis of his recall from a

10-session sample shows that 94% of all digit groups recalled are clustered within categories. His

recall of items within these categories is ordered according to the magnitude of the coded values.
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Further support for this representational hypothesis conin from recently constructed

simulation programs developed to model DD's semantic encoding of digit groups and the

organization exhibited in his final free recall. The encoding model assumes that a semantic

network organized along the lines of the network in Figure 6 govems DD's categorical encoding

of digit groups. Parsing digit lists into uncategorized, digit groups as DO would with his retrieval

stnicture, the program performs a set of tests designed to mirror the decision-making procedures

DD reports using to determine semantic codes. The results of these tests lead to a category

assignment for each digit group. Comparison of the program's categorization performance with

DD's on identical lists shows tat it matches DD's category assignments on 98% of the digit

groups it receives.

'abe free-recall model assumes that retrieval of digit groups is governed by the same

knowledge representation used for encoding. This mode: assumes a process equivalem to a

depth-first top-to-bottom activation of the nodes of his semantic network and that activation of

nodes and their associated labels represent- activation of cues used to retrieve digit groups whose

representations contain the same semants features. The model then performs a systematic

within-category search as this process has been imferred from analyzing concurrent verbal

protocols of his fmal free recall (Example: "OK, quarter-miles in L a forties.., four-seven-six...

quarter-miles in tbe fifties.., five-eight-one, five-nine-oh, five-nine-nix"). Evidence for the

validity of the model is its ability to predict the order in which digit groups are recalled by DD in

free recall. The average rank-orda correlation between the model's predictions and DD's

performance on a sample of items recalled in 10 practice sessions is .92 (SD = .05).

Furthi evidence for the postulated representation comes from Chase and Ericsson's (1982)

investigation of the internal structure of DD's 1-mile-time category. They presented DD with

3-digit sequences that he always coded as 1-mile times printed on cards. His task was to examine

the items and sort them into groups based t.,i,on bis perception of their similarity. Chase and

Ericsson found that DD (like SF) sorted these items into a variety of categories that suggested a

hierarchical knowledge structure containing several levels of mutually-exclusive subcategories.

I have used a similar agioach to replicate the Chase and Ericsson fmdings for DD's 1-mile

category end examine whether his other semantic categories were similaiiy stguctured.

Procedures differed from those of Chase and Zricsson (1982) in the foil-Jiving respect after DD

would sort cards into groups, be was asked to label all groups created and then combine these
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groups to form larger groups and, again label the new set of more inclusive groups. This process

continued until DD had produced a sing/e group iepresenting one of the categories listed in Table

7.

Using this procedure and the same materials Chase and Ericsson used to analyze DD's

1-mile category, results nearly identical to theirs were obtained. Presented with items that fall

into his 2-mile category, DD's sorting indicated that this category exhibited a similarly detailed

hierarchical internal structure. The semantic network pictured in Figure 7 reflects the

representation infetred from his sorting of items front the 2-mile category. The structure reveal:xi

for these categories suggests a powerful mechanism for chunking random digits into meaningful

units and also elaborating their represenuttion in a way that both associates semantically-similar

chunks with higher-order category labels and differentiates them at lower levels.

As Figure 6 suggests, however, DD's semantic categories differ quite a bit in the amount of

internal structure they exhibit. DD sorts items from his 1/4-mile and 3-kilometer categories into

relatively !ew meaningful subcategories. He reports having no subcategories that he cousistently

uses to differentiate digit groups categorized as 3-mile times, dates, or miscellaneous patterns. A

hypothesis currently being tested is that the degree of structure v:ithin a coding category is

inversely related to the proportion of all possible digit sequences to which that category can be

applied. The rationale is that the more items that fall Into a category or subcategory, the greater

the neee to encode items with features that discriminate them to ward off interfaence. This

raises the issue of how DI) deals with the threat of interference when multiple items fall within

his less-differentiated semantic coding categories or subcategories. The issue is addressed in the

forthcoming discussion of contextual encoding.

In general, the simulations of DD's categorization and free recall, his verbal protocols, and

his performance in the sorting tasks provide converging support for the theoretical description of

the organization and content of DD's semantic knowledge base. With this picture of his

knowledge base, attention turns to how its organization supports DD's encoding mnd retrieval of

list items in the context of dig:it-sp..a trials.

How does the kind of knowledge organization shown in these studies contribute to DD's

performance? As indicated earlier, well-differentiated coding categories mediate his encoding of

elabJrate, meaningful, and relatively unique memory representations for digit groups. The

2 5
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literature shows that such characteristics promote retention. But there is e more fundamental way

in which the organization of DD's knowledge base supports such encoding. The organization

shown in DD's semantic memory reduces the amount of processing related to his recognition and

encoding of meaningful pattems. Of course, the organizathn of his retrieval._ ..aucture and the

manner in which it reliably guides his systematic parsing of lists into codable groups serves a

similar role and it is evident thzt the operations of these two mechanisms are well integrafed.

Using the knowledge represented by these mechanisms, information about the site of a givri

digit group and it's first digh or two sharply constrains search for the appropriate set of codilig

featura to a relatively small semantic space.

Although D13's semantic coding system represents a powerful mechanism for recoding

digits as meaningful chunks of information, encoding in not its only funt-tion. There is also

evidence that relate I the organization of his semantic knowledge to his serial recall. Thus, like

his retrieval structure, his semantic coding system mediates both encoding and retrieval of

information in the digit-span task, althOugh the temporal structine of his serial recall indicates

that his retrieval structure is the primary amess mechanism.

Thesole his semantic Imowledge base plays in serial recall is clearest in situations in whiui

DD experiences difficulty in retrieving a digit gioup at a particular '1st location. Most lists in the

range of 100 digits often include such a group or two. They are easily distinguished because their

retrieval times are measured either in tens of seconds or sometimes minutes. Petiods of silence

this size stand out clearly in DD's typically fast and fluent serial recall.

Dot concurrent and retrospective protocol data collected on such occasions reveal three

knowledge-based strategies fir r- nieving the missing digits. When DD has a few semantic

features about a hard-to-recall group, he restricts his search for its cot tents to a relatively small

range of candidates, probing memory using category labels subordinate to those he holds.

Together, the retrieval cues he holds and his implicit knowledge of the organization of his

knowledge base provide the constraints that narrow his search .9.11* additional cues. In situations

when DD cannot recall the semantic category used to code a group, his protocols show that he

resorts to using his semantL coding categories in an orderly generate-and-test strategy for

retrieval. He searches through his coding categories as he does in his fmal free reall, naming

each to himself to see if he recognizes the semantic code for the group in question. If he can

establish a cateory with reasonable confidence, he then uses its internal structure tl guide further

26
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search. In the infrequent instances in which his recovery of a complete semantic code doe; not

produce the missing digits, he generates a sequence of digit-groups testing each for recognition

provided that the number of candidates is small. The interesting feature of these mback-up"

retrieval strategies is that they reveal DD's ability to intentionally exploit the organization of a

particular data structure in his semantic memory.

On the Relations between DD's Knowledge Components

Up to now, description of DD's retrieval structure and system for semantic coding has

implicitly emphasized their independence. Two points are in order to clarify curreet assumptions

about their interaction and similarity.

First, there are noteworthy structural and functional similarities between DD's retrieval

structure and his semantic coding system. The knowledge representations employed by these

systems are both multilevel hierarchies with multiple branches at each abstract level.

Functionally, both are used to organize and encode to-be-remembered material in LTM and later

mediate its orderly retrieval. Recall how retrieval structures guide. DD's serial recall in the digit-

span task and his semantic knowledge structure guides both his free recall and reconstructive

retricval of hard-to-recall digit groups in serial recall. The content information that these

mechanisms generate may be different, but their structural and functional similarity is striking.

Further, the similarities between these mechanisms and the mechanism known as a discrimination

net in Feigenbaum and Simon's (1962, 1984; Richman & Simon, 1989) EPAM model of memory

suggest that DD's semantic coding system and his retrieval structure represent vet, _uphisticated

implementations of a general EPAM-like memory mechanism adapted to handle the demands of

the digit-span task.

Second, it is important to realize that the operation of these mechanisms has to be extremely

well coordinated, particularly during list encoding, considering the complexity of DD's coding

processes and the presentation rate used in the digit-span task. Independent theoretical argtrnents

about tht ree-time retrieval capabilities of discrimination nets (Feigenbaum & Simon, 1984)

make such precise temporal meshing plausible, lending further credibility to current assumptions

about the interaction of these knowledge structures in DD's list encoding and retrieval.
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Although the evidence reviewed in the preceding sections indicates that DD's semanfic

coding system and retrieval structure are critical components of his skill, the operation of these

mechanisms alone does not explain all aspects of his performance on the digit-span task and

related experiments. For instance, protocols taken when DD's span was in the 80-100 digit range

(lik , those in Tables 4 and 5) showed that DD's list encoding involves mote than imposing

meaningful interpretations on systematically parsed list segments. Also, the development of his

semantic coding system and retrieval structure cannot account for improvements in DD's digit-

span that occurred after these mechanic= were well established. After 3 years of practice (when

his span had not yet surpassed SF's) verbal protocols taken in regular practice sessions suggested

that these mechanisms were intact and operational. Subsequent monitoring of DD's protocols,

studies designed to examine the structure and function' of them mechanisms, and replications of

these studies at later points in DD's practice also indicated that his coding and retrieVal processes,

as they relate to these mechanisms, remained quite. stable. This implies that an additional

mechanism or additional mechanisms were developed and/or refined to lift his span to its peak.

Similar reasoning by Chase and Ericsson (1981) in their analysis of SF's 'kilned them to

propose that practice-related speed-up of memory processes was an essential part of the

development of skilled memory. They argued that Ifter SF had established his semantic coding

system and retrieval structure, increased efficiency in theL operation as a resolt of practice

accounted for subsequent improvements in SF's digit-span. Consistent with this argument were

data showing that the time SF needed to encode digit groups decreased monotonically with

practice.

This finding generalizes to DD. Using a self-paced list presentation procedure tomeasure

DD's encoding speed at yearly intervals, steady decreases bi Pis encoding times (per dieit group)

were seen over bis thud, fourth, and fifth yearr of practice. But another important and logically-

related development accompanied improvements in his coding efficiency.

Over this period, the einergence of a new coding mechanism was revealed in both the

temporal character of DD's serial recall and his verbal reports. With increasing frequency, pairs

of digit groups and triplets that composed supergroup twits were recalled with uriusually short

intergroup interval. In his retrospective protocols, DD regularly reported coding more than just
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the meaning and location of these sequences. Almost invariably, be reported explicitly coding

relations among the symbolic elements he held in memory. Together, these two related

phenomena suggested that increased encoding efficiency had spiwned a new mechanism for

encoding higher-order patterns of information.

These patterns, and the labels DI) uses to represent them, belong to the broad class of

encodings called contextual codes. Contextual coding refers to DD's representation of a wide

variety of relations that he discovers as he receives a list on a digit-span trial. What differentiates

his =stick of contextual codes from his encoding of retrieval stniuture locations and sesnintic

encoding of digit groups is the irregular and variable nature of contextual encoding. Wham DD

invariably encodes the relative location and semantic content of each digit group in a list, the

contextual codes he creates, if any, depend upon contextual variables such as the contents of a

particular trial list, the contents of any preceding lists, and biirePresentation of list contents. It is

important to emphasize here that the content information available to DI) during list presentation

is not equivalent to that available to a novice, due to DD's knowledge-based pattern recognition

capabilities.

What do contextual codes consist of and whzt accounts for their minion? Beneath the

superficial diversity that characterizes DD's contextual coding from trial to trial, orderly "deep

stiuctures" exist. Analysis of DD's retrospective verbal reports from over 100 digit-span trials

has revealed sevend abstract categories of contextual codes. Typically, these categories are

identified in his protocols by distinctive verbal labels. Tables 4 and 5 contain a few such as

"back-to-back," "add-em up," "faster than," and other [semantic code]."

In these protocols DI) reports coding relations between semantic codes whose creation can

be separated by either a little or a lot of time and processing activity. Such relationa link (a)

semantic codes created for digit groups presented contiguously within the same digit-span trial,

(b) codes in the same list whose creation is separated both by time and DD's coding of

intervening digit groups, and c) codes from different lists presented in the same session. More

concretely, in Table 4, DD recognizes that the third and fourth digit gums are both miles in the

6-minute range. He relates these items by Ooding the second sequence as a faster time than the

first. In a :buns* fashion, he reports that two contiguous sequences (6938 and 5802)occutring

later in the same list were both encoded as 10 mite times and differentiated on the basis of their

assignment to subcategories within the 10-mile category. Lilcewitte, at several points in Table 4,

DI) reports having noticed that codes for contiguous digit groups have redundant elements.
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Redundancy is not the only basis for relating configuoun codes, however. DD regularly

recognizes and encodes sequences of semantic codes that occur in ascending (cg. "half-mile,

three-quarter, one-mile") or descending (e.g., "three-q1 rter-mile, half, quarter") order within his

semantic coding system. He also notices and encodes alternating sequences of codes such as

"age, mile, age," cc "two-mile, ten-mile, two-mile." Interestingly, his coding of such relations

between triplets of semantic codes i4 restricted to situations in which redundant (e.g., "rile, mile,

mile"), ascending, descending, or alternating codes occur within a supergroup unit of his retrieval

structure. This constrak. sugpests that abstract location infonnation and semantic codes serve as

building material for contextual codes.

Contiguity is not essential for DD to notice semantically similar codes and relate them. In

Table 4 that he reports noticing that 9396 is nearly identical to the sequence 9393 that occurred in

a previous trial. The scope of such discovered relations sometimes extends across sessions. On

one occasion. DD noticed that a particular digit sequence he was encoding had occurred in an

identical position in a list in the previous day's session. A check of the lists presented on the

previous day verified DD's observation. This anecdote, and, in general, DD's ability to discover

redundancies of the type described here reflects two salient characteristics of his skill. The first is

a remarkable retention of information over intervals of considerable length, during which a

wealth of potentially interfering information is encoded. The second is his ability to 'recognize

the threat of interfennce that redundant coding of digit groups creates and to encode relational

information that links and differentiates the redundant codes simultaneously. The result is a

unique memory code which, in theory, resists interference.

DD's encoding of different relational patterns of information is not restricted in content to

semantic codes. He also reports noticing a variety of relations among digits. For example,

Tables 4 and 5 show several instances in which he notices the repetition of contiguous digits, both

within and between digit group boundaries. The phrase "back-to-back" typically identifies

contiguous and redundant symbols, be they semantic codes or digits. He also frequently reports

coding symmetric relafions between individual digits and pairs of digits which he codes with the

label "frontwards/backwards" (cf. DD's coding of the sequence 8558 in Table 4). His use of this

latter category label for a variety of different contents (e.g., 191, 8558, age-mile-age) illustrates

the abstract nature of his contextual coding patterns.

His protocols show that arithmetic relations among digits and digit groups form the basis for
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another class of contextual codes. There are frequent occasions on which DD reports coding

pairs of digits within 4-digit groups in terms of the difference between the quantides represented

by each pair. For example, in Table 4, DD reports coding the groups 4346 and 4548 in terms of

an attribute denoting a subtractive relation (e.g., "apart") and the value "three." Additive relations

are also noted for several digit groups and identified by the label "ads:Van-up." This label is

applied when some subset of digits within a group sum to either another digit or combination of

digits within that group. The protocols related to the digit groups 352, 642, 716, and 4 )27 in

Table 4 reveal several instances in which this general relation is encoded. In the case of the

contiguous sequences 352 and 642, DD explicitly mentions noticmg a double redundancy in his

coding of these items; the pair are coded as being both "back-to-back" 1-mile times and

"add-'em-ups."

Evidence suggests that DD uses contextual coding to reduce memcry interference on the

long trials he received at advanced stages of practice. The longer lists DD gets as a result of

improving his digit-span increase the amount of potentially interfering information with which he

must deal. This idea is consistent with the view that interference is the principal threat to recall of

information stored in LTM (Anderson, 1985; Crowder, 1976). Becaure DD's creation of

contextual codes is a form of elab 'native encoding, this activity should enhance retention,

provided it loes not hinder other "regular" .-.....Ang operations.

Several sources of evidence show the intrierence is a very real threat to success on

extended digit-span trials. Chase and Ericsson (1982) have shown for both SF and DD that

accuracy of serial recall diminishes as a function of trial order within a practice session and that

list rehearsal time6 increases. In addition, the probability of correctly recalling a digit group in

postsession free recall increases as a function of trial order. Subsequent work with DD has

replicated these fmdings, although the magnitude of tile effects has diminished with practice,

when list length is held constant. Further evidence for interference has come from studies using

aror analysis and protocol analysis. These studies relate serial recall errors to confusion of new

information with information encoded earlier within a list or in previous trials. Regularities in

these errors suggest that they are due to confusion of specific types of information created by

DD's diffaent coding mechanisms. For example, enors involving the transposition of entire

4Rehearsa1 time is defined as the time between presentafion of the last digit in a trial list and the point at Ivhich DD
begins his serial recalL
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digit groups from different supergroup clusters implies confusion of retrieval strucmre locations

within a list. Other errors car be attributed to the semantic similarity of incorrectly recalled digit

groups to previously presented digit groups.

Experimental evidence supports the idea that contextual coding enhances DD's list retention

by reducing interference between is memory codes during serial recall. In a series of

experimental sessions DD was presented with 50-digit lists whose contents were not randomly

generated, but cat efully constructed to manipulate the opportunities for contextual coding they

presented. "Enric.led" lists provided many potential opportunities for contextual coding, whereas

"depleted" lists were designed to minimize the number of such opportunities. It is important to

note that manipulation did not in any way alter DD's normal list parsing, semantic encoding of

digit-groups, or mtrieval structure indexing.

Table 8 presents measures of DD's serial mall petformance as a function of list type.

DD's serial recali was near-perfect and did not differ as a function of condition. Consistent with

expectations, indices of retrieval speed show that the contents of enriched lists were recalled

much more quickly that those of the depleted lists. Analysis of recall times as a function of list

type and trial order within a session supported the hypothesis that contextual coding reduces LTM

interference. On the first trial of each session, where interference should be minimal, recall times

were nearly equivalent for both list types. Recall times rose sharply for depleted lists on

subsequent trials within a session, where increased interference is expected. Recall times for

enriched lists did not increase appreciably until tAe fifth and sixth trials, and then only modestly

relative to increases observed for depleted lists.

This work provides converging evidense for DD's encoding of contextual relations and

suggests that this activity plays an important, but not indispensible role in enabling him to

achieve nearly perfect serial recall of rapidly presented 50-digit lists. It seems likely that

contextual coding plays a much more important role in achievutg perfect serial recall as the

length of trial lists increases. Consistent with the view of Chase and Ericsson (1982) and in

support of the theory that motivated this study, contextual coding appears to be a mechanism

employed to reduce the interference that remains, even after well-elaborated memory traces have

been created using mechanisms that semantically encode short random saquences and code their

orninal relations.
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An important theoretical point is that DD's contextual coding represents an emergent

mechanism used to achieve exceptional memory performance. This mechanism can be

understood in terms of the development of skilled memory. The coding strategies and structures

related to contextual coding are based on information created by DD's use of a retrieval structure

and a similarly organized body of semantic knowledge. Practice with these mechmiisms

increased the efficiency of their operation. The consequence is that large amounts of task-

relevant information are encoded, accessed, and recalled both reliably and efficiently. This

efficiency is important in that it provides DD with the resources to strategically process

information available to him in a working memory whose opacity is expanded by efficient LTM

coding and retrieval mechanisms.

Some General Conclusions About DD's Skill

Collectively, studies of DD's skill support the hypothesis that DD creates richly elaborated

LTM representations for the materials presented on digit-span trials. Various sources of evidence

described in this rvort suggest that the composition of these representations is consistent with the

tbstract tripartite structure originally proposed by Chase and Ericsson (1982) and shown

schematically in Figure 8. In addition, these studies show that the same mechanisms play

important roles in retrieving stored information.

Recently, developers of computer models of human learning and skilled performance have

discovered the advantages of combining information from different knowledge modules within a

system to produce intelligent behavior (Newell, 1989, 1990). Consistent with these findings, this

analysis shows that DD's skill can be decomposed into separate knowledge components whose

coordinated interaction produces extraordinarily high levels of skilled paformance.

To sum up, DD's exceptional memory skill results from the interaction of practice,

knowledge, and strategies. At the suit of his training DD exhibited no unusual general aptitudes

or memory abilities. He was seiected, however, for his familiarity with a particular body of

knowledge that he could bring to his training and given an effective strategy for applying that

knowledge to extend his digit-span.

Through practice DD developed new resources for handling the memory demands of longer

and longer lists. Practice with the strategies he was given (and the memory mechanisms he

developed to implement these strategies) improved his performance in the digit-span task until his
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nrogs-m brought him to the limitations of these mechanisms. Their use, however, provided him

.*it.1, the resources to fashion and implement new atmtegies for dealing with the demanis that

1.11ger lists posed. His exploitation of the resources available to him which include a large and

.4.eri well organized knowledge base, a wide revertohe of encoding strategies, and enhanced

information procesr ng efficiency enabled him to increao his information-processing capacity

and =tend the limits of human performance on the digit-span task.

I emphasize what I see as the most novel and important contribution this research makes to

understanding human expertise. In the literature, there is nearly imiversal ageement that a

cornerstone of expertise is experts' ability to rapidly encode global patterns of familiar, task-

relevnnt information (Chase, 1986; Chase srad Simon, 1973a, 1973b; Chase & Ericsson, 1982;

Ericsson & Staszewski, 1989; Glaser & Chi, 1988; Newell, 1990; Olson & Rcuter, 1987; Posner,

1988; Tech. Rept. 88-1, 89-1, 89-2). With the exceptions of studies carried out in the context of

SMT, few studies address how these patterns or chunks are represented, retrieved, and used.

Studies of DD's skill go further. They catalogue the variations in content, stmcture, and

complexity of the patterns an expat strategically creates to achiev exceptional performance.

They also dissect the knowledge base that supports high-level pattern recognition capabilities,

identifying specific mechanisms used to create one level of pattern information and whose

efficient and interactive operations generate the material and resources for the creation of higher-

order patter..a. They also show the same mechanisms are used to retrieve the encoded patterns.

In describing how practice, knowledge, and strategies relate to expert performance, these studies

describe how specific component mechanisms of DD's skill interact with each other and with

practice to support the development of new and adaptive knowledge structures and memory

coding processes.

Expert Mental Calculation: Structure and Process

Several sources of evidence show that the mental calculation trainees' memory management

strategies are consistent with the principles of skilled memory. The three following sections

outline the support for this claim. Detailed analyses of the Aaees' computational procedures

also show that efficient computational strategies can reduce the memory demands of mental

calculation and that their adoption can improve performance.

. , . .

11.
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Evidence for Skilled Memory

Retrieval structures in expert mental cakulation

One source of evidence for retrieval structures are concurrent verbal protocols collected

from GG and JA. Approximately 25-30 hours of verbaled solutions have been collected from

each. These data were obtained by asking the trainees to "think aloud" (Ericsson & Simon, 1980;

Newell & Simon, 1972) as they solved problems just like those presented in practice sessions in

terms of size and mode of presentation.

Clear evidence for retrieval structures comes from the manner in which both trainees

structure problem multiplicands, intermediate results, and products in their protocols. For

instance, when GG encodes a five-digit multiplicand upon presentatioo, the pause between his

enunciation of the second and third digit is noticeably longer that those sepauting other

consecutive ;air of digits (which are approximately equivalent). The same temporal pattern

characterizes his subsequent references to this operand within a solution protocol. The finding

that this pattern ia ccris'oiently observed for the vast majority of five-digit multiplicands in the

1x5's and 2x5's indicates that this is an abstract representational format. The pattern of pauses

suggests that this format is hierarchically structured, coosithing of two inteimediate level abstract

units, the first containing the fust two digits and the second containing the remaining three. The

temporal strzcture of his four-digit multiplicands suggests a abstract hierarchical structure

containing t wo groups of two digits. Similar regularities are evident for his structuriag of

intermediate results and final products, although it appears that the organizational format used to

represent any number that appears in his computations depends upon variables such as its

magnitude, the size of the problem, and the function it serves in computation (problem operand,

intermediate result, or fmal product). JA's protocols reveal sirrilar structural regularities in his

representation of numbers, however the specific formats used by JA differ from GG's.

Chronometric data have been used to confum these observations. Because listening to the

multiplicands recalled by the trainees in post-practice problem recall sessions suggested the same

sort of temporal organization seen in their concurrent protocols, the final free recall protocols

provided an opportunity to test notions of retrieval structure organization based on the concurrent

protocols. Therefore, predictions were made about the structure of multiplicands for different

sized problems for each of the r Meta and then tested by measuring the pauses between the

individual digits of the multiplicands recalled in fmal free recall.

3 5
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For example, the tree-structures drawn in the right-hand corner of each of the plots in Figure

9 represent the retrieval structure organizations predicted for GG's 3-, 4-, and 5-digit

multiplicands. Note that predicting a single structure for all problems with a common

multiplicand size, disregarding the variables of multiplier size (lx or 2x), problem presentation

mode (oral or visual), and multiplier value, implies that a common abstract structure is used to

code many varied instances.

Making the same assumption used test models of DD's retrieval structure organization (i.e.,

that a tree traversal process is used to access digits represented by the terminal nodes of a

hierarchical associative memory strucrue), longer paw are predicted between pairs of digits

that span retrieval structure unit boundaries. The data IA. ts plotted as a function of intervals

between consecutive pairs of digits and problem presentation mode, represent means for a

minimum of 50 observations. The important finding is that statistically reliable increases in

pause times occur at the predicted inter-digit intervals, confirming that retrieval structures are

used to store and access task -critical information in LTM.

Further evidence validating the trainee's use of retrieval structures comes from the

successful prediction of the trainees' solution times achieved by process models discussed in a

later section of this report. .411 more detailed description of the retrieval structures employed by

the trainees is found in Technical Report 88 i.

Evidence for chunking

A characteristic of expw mental calculators repeatedly cited in the literature is an extensive

knowledge base of interrelated and easily accessible number facts (Ball. 1892; Bidder, 1856;

Bryan, Lindley, & Harter, 1941; Hunter, 1962, 1977; Jakobsson, 1944; yiNhell, 1907; Mueller,

1911; Sandor, 1932; Smith, 1983). For example, Hunter (1977) reported that Aitken could

"automatically" report whether any number up to 1500 is a prime or not aml., if not, immediately

give its factors. Bryan, Lindley, & Harter (1941) reported thst another expert. AG, knew 'by

heart" tIte multiplication tables up to 130 x 130, the squares of all numbers up to 130, the cubes of

numbers up to 100, fourth powers up to 20, and more. Consistent with these reports, AB exhibits

a similarly elaborate knowledg t; base of number facts and relations, which he reports to have

dveloped not duough intentional memorization but, naturally, through years of practice at

squaring and multiplying.
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In spite of the limited amount of practice GG and IA have had relative to the experts cited

above, several kinds of evidence indicate that each has acquired a store of declarative knowledge

which resembles the knowledge acquired by lifelong experts in use, if not in volume.

The first signs of such development occurred for both trainees at a remarkably similar point

in their training. Around their 200th session, both showed an increasing incidence of =usually

fast soktion times on cmtain 1 x 2s. The times for these ptoblems were closer to those normally

observed for ideclty problems (whose nwltiplier is 1) and "decade" problems (whose

multiplicands are multiples of 10) than to the times for problems whose products presumably had

to be computed rather than retrieved from memory. When questioned about these instances, both

GG and JA invariably reported recognizing a familiar ptoblem and consequently deviating from

their usual solution procedures. In many of these instances, they reported immediately

"knowing" an answer upon receipt of a problem. In addition, both reported occasionally noticing

such familiar problems embedded in larger problems and altering their computational plans

accorengly. On the basis of these reports, post-trial retrospective protocols were taken from GG

and JA during practice sessions on a regular basis to determine the frequency and circumstances

under which such events occurred. In addition, the frequency with which concurrent protocols

were taken wt.s increased.

The retrospective and concurrent protocol data both showed evidence consistent with the

mnemonic encoding principle of skilled memory. The retrospective protocols showed that the

frequency with which the trainees' report noticing familiar subproblems with practice problemz

increased fairly steadily with practice. Between sessions 226-235, both reported noticing such

subproblems on about 30% of the practice trials on which such pattern recognition can occur.

These percentages stood at 89% for GG after 450 session and 64% for IA at the end of ilk

practice.

The concurrent protocols show these numetic patterns are treated in two qualitatively

different ways in the course of computation. First, these patterns are expressed are quantities

rather than as concatenations of single digits. For instance, with the problem 25x4, the

multiplicand would be expressed as "twenty-five," rather than as a ordered pair of digits (i.e.,

"two, five). Second, such familiar patterns are distinguished by the ways their products are

produced. Typically, there is no record of intermediate computation intervening between

attention being paid to a familiar subproblems operands and the generation of its product, which

3 7
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occurs almost instantly. This is consistent with the very fast solution times observed for such 1x2

problems in otice.

In what sense are these patterns meaningful? The answer is best revealed by the trainees'

protocols. Concurrent protocols show that theis recognition of particular patterns leads to the

selection of one of a variety of fairly local computational strategies that each has available. These

straegies are local in two senses. First, the patteins on which they are based are small and consist

of two elements, a multiplier und multiplicand. Mrs patterns, even at the conclusion of his

training, were rarely larger than 1 x 2. Thls was generally true for JA, although occasionally'be

reported encoding patterns as large as 1 x 4. The limited size ot these patterns, which falls within

estimates of STM capacity, suggests the constraint that iTM imposes on cooft: processes.

Second, these strategies are local in the sews that they are implemented within the lager

stereotypic control stnictures that represent the general left-to-right algorithms that IA and GO

use for one- (1x) and two-place (2x) multiplication. Essentially, the patterns that GO and IA

recognize and encode represent familiar subproblems which can be solved efficiently with

specialized strategies.

Both the patterns and strategies to which particular patterns relate differ for the trainees. In

general, IA has a larger repenoire of strategies and a greater variety of pattern classes to which

they ase 'elated. Like GG, IA has "expanded his multiplication tables" so that there are a variety

of 1 x 2s whose ptoducts he can retrieve and report in a second or less. His ability to Lientify

quickly the factors of particular numbers enables him to combine factoring and retrieval as a

means of solving certain problems and subproblems. In addition, in the course of practice JA

discovered an abrsact pattern of results related to an abstract class of problems that led him to

devise a computational strategy whose basic procedures resemble those taught in the

Trachtenberg system of speeded mathematical computation (Cutler & McShane, 1960).

Basically, this strategy is a nde-based computational system applicable to problems or

subproblems whose multiplier is 9 and whose multiplicand is a sequence of digits that are either

identical (e.g., 9 x 444) or else ascend or descend in units of either 1 or 2 (e.g., 9 x 876, 9 x 579, 9

x 234, etc.). Exploitipg the redimdancies in the products of such problems, IA's strategy enables

him to eliminate addition operatitais from his computations, thus saving him time.

Although GG's strategies are less varied and original than IA's, his strategies illustrate how

rapid pattern recognition and efficient strategy use can improve calculation speed. Table 9
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sents the principal results of a study that investigated the relation between hui strategy use and

performance.

Ln this study the efficiency of Gq's strategies was examined by testing him on the entire

populadon of 1 x 2 multiplication problems (excludirg problems that use 0 as a multiplier). In

the oral condition, each of a set of 810 problems was read just as in oral practice blocks. In the

visual condition, problems were presented visually on a CRT. Problems In each condition were

presented in random order, and approximately 100 ads were presentad in each of 8 sessions

conducted on cousecutive days. On each trial IGG's task was to report the product et the

presented protlem as quickly as possible and afterward report the strategy he used to solve the

problem.

Four basic strategies previously observed in GG's protocols were reported. His Identity

strategy, applied to problems with a multiplier of one, is intuitively obvious; GG would simply

report 'die multiplicand that had bczn presented. He described his second strategy, labelled

Re;rieval, as one in which he would report the product that he "immediately knew" won problem

presentation. GG's other two 1 x 2 strategies involved sequential arithmetic operations, in

contrast to the two already mentioned. The strategy labelled Calculation involved solving 1 x 2s

in the way that GG originally solved them at the beginning of his training, just as novices would,

using two operations to generate simple products and a third operation to add them. His

remaining strategy, labelled Grouping, represents an abbreviated version of full computation.

According to GG, this procedure invo:ves two consciously controlled steps. The first o nation,

be reports, is his immediate and simultaneous retrieval of two simple products upon receipt of a

problem. The second operation is their addition. Note that with the exception of problems on

which the "FUll" computation strategy is used. GG's concurrent verbal protocols indicate that he

represents multiplicands as single quantities or chunks rather than as disa t symbols. This

suggests that the patterns driving strategy selection we specific pairs of quantities.

Table 9 shows the proportion of trials on which each strategy was employed for both

presentation conditions, and GG's mean reaction times aggregated as a ftmction of reported

solution strategy. Because detailed presentition of these results exceeds the scope of the present

discussion, the data will be used to make three general points. First, the "full" strategy is used in

only about 5% of the situations where GG used it as a novice. Second, the "retrieval" and

"grouping" strategies produce solutions much more quickly than full calculation. It is also the
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case that these strategies produce fewer intermediate results, an important consideration kr that

such results represent potential sources of interference when it is time to retrieve a product for

output. Third, GG's average response latency (the interval between problem presentation and

response initiation) for all visually presmited 1 x 2s (Mean sr 692 msec, SD xi 136) approximates

solution times that uniracticed adults produce in solving visually presented simple (1 x 1)

multiplication problans (Aiken & William, 1973; Campbell, 1987). In general, these findings

illustrate how knowledge acquired through practice = produce dramatic improvements in

calculation speed. The knowledge referred to here consists of meaningful patterns of information

associated with specialized computational strategies. These patterns are meaningful in the sense

that they are explicitly encoded and used to enable IA and GG to achieve their principle goal, to

solve multiplication problems as quickly and as accurately as possible.

The general point here is chat AB, GG, and IA all exhibit a form of mnemonic coding that

resembles the pattern recognition capabilities of experts from other domains (Chase & Simon,

1973a, 1973b; Eisenstadt & Kareev, 1975; Reitman, 1976). Through extensive practice with a

wide variety of problems, thcse experts have learned to recognize multi-digit patterns that

randomly occur both in isolation and evibedded 'ai larger problems. These patterns are

meaningful in the sem that they are linked to specific computatimal strategies that reduce

calculation times. In their discussion of the role of pattern recognitizz. In the play of

chessmasten, Simon & Chase (1973; Chase & Simon, 1973b) suggested that the patterns experts

hold in memory are linked to plausible "good" moves. As a result, their ability to rapidly

recognize familiar patterns enables them to select moves mote eff.iently than less skilled

players. The current work shows that similar knowledge-based pattern recognition %-,apabilities

enable expert mental calculators to employ computational algorithms that decrease solution times.

Thus, this work explicitly links complex pattern recognition with strategy selectioz and high-level

performance.

It is theoretically significant that Siegler's studies of children's arithmetic (Siegler &

Jenkins, 1989; Siegler & Shrager, 1984) sdow that children's skills parallel those of GG and IA in

several respects. For instance, children discover and employ a variety of computational strategies

for solving simple arithmetic problems. In addition, there is good evidence that their strategy

selection is apparently determined by their recopition of specific familiar COWL/illations of

problem oi rands Fmally, as their skills improve with practice, memory retrieval replaces multi-

4 o



.
38

step computation as the preferred solution strategy for an increasing number of problems. These

parallels suggest a fundamental continuity in the skill acquisition process &moss age levels,

practke levels, and tasks.

To sum up, it appears that expert mental calculators use semantic memory in three principal

ways to achieve fast and accurate performance. First, consistent with Skilled Memory Theory's

mnemonic encoding principle, they use an elaboratuly interrelate knowledge base to recognize

and encode meaningful patterns of nuinbers that occur either as problems or embedded

subproblems, thus promoting their retention. Second, much like chessmasters apparently use

their pattern recognition capabilities to efficiently select effective chess moves, calculation

experts use their unique pattern recognition capabilities to select efficient computational

strategies on a problem-by-problem basis. Finally, experts use their knowledge to replace

computation with retrieval as a means of generating products and intermediate results, thereby

decreasing solution times. Just as SF and DD became expert mnemonists by learning to use

semantic menzoty to encode meaningful patterns of digits, this work shows that GO and JA have

developed knowledge bases which they use in a similar fashion to become experts in the domain

of mental calculation.

Evidence for speed-up

The speed-up seen in the trainees' solution times implies an underlying increase in the

speed with which meaningful patterns are recognized, encoded with retrieval structures, and later

retrieved. These data do not provide conclusive support for SW' s speed-up principle, however.

Improvements in solution speed can result also from the discovery and use of efficient

computational algorithms tha t decrease both the processing and memory demands related to

computing solutions. Clearer support for the speed-up principle comes from data that relate

speed-up more directly to memory encoding and retrieval processes.

Figure 10 plots GG's learning curves combining curves for orally and visually presented

problems of corresponding problem size in each plot. The shaded area in 'Ntch plot depicts the

visual advantage, that is, the amount of time by which mean solution time for orally presented

problems exceeds the mean for visually presented problems. This measure is obtained by

subtracting the mean solution time for visually presented problems from the mean for orally

presented problems for each block of 5 practice sessions. Unshaded areas between. the two
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functions indicate blocks in which problems presented orally were solved more quickly than

visual problems.

The most salient common feature of these plots is the reduction in shaded area as a fninction

of practice. This reflects a gradual convergence of solution times for the oral and visual

presentation. Statistical comparison of oral and visual solution times from sessions 476-500

reveals that a reliable difference between means occurs only for 1 x 1 s; here, orally presented

problems are solved more quickly. In addition, a consistent but non-significant oral advantage is

observed for 1 x 2s and 1 x 3s. Considering GG's ability to use direct retrieval to solve a good

proportion of 1 x 2 problems, resentation of the first problem operand in the oral condition may

prune associated patterns in semantic memory and lead to faster retrieval times than those found

in the visual condition. For all other problems sizes, the means still reflect a slight visual

advantage that is swamped by the variability in solution times.. The main point, howeva, is that

the visual advantage evident in the early stages of practice diminishes in all cases with practice.

The interpretation of this trend is that GG's skills at storing and retrieving problem information in

LTM have improved with practice to a point where he encodes and operates upon internal

representations nearly as quickly as he processes external representations.

The same general pattern, that of a reduction of the visual advantage as a funcetin of

practice for al_ oblem sizes larger than 1x3's, is also observed for TA. Consistent with this

practice related trend, further evidence for the speed-up principle is seen in AB's performance.

His solution times show no reliable differences as a function of presentation made over the same

range of problem sizes.

The relevant difference between prIsentation conditions lies in the demands they place upon

memory. Recall that, in the visual condition, problenr- operands are consurJy available for

inspection while the solution process proceeds, whereas in the oral condition get:Urg the coA,..;ct

answer to a problem depends on perfect retention of problem operands. Thus, it seems

reasonable to assume that the visual advantage stems from the extra Lne used to encode and

retrieve problem operands (and their constituent elements) in the oral condition.

The key empirical finding is that the visual advantage evident in the eerly stages of practice

and logically related to memory load diminishes wit/ practice. The interpretation of this trend is

that the trainees' skills in storing and retrieving problem information in LTM have improved with
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practice to a point where they encode and operate upon internal representadons nearly as quickly

as they process external representations of the same information. This development is consistent

with the speed-up principle of skilled memory.

Proce..-*-ig Strategies, Capacities, and Performance

Although the evidence obtained indicates that skilled memory represents one way experts

can increase information-procestiing efficiency, it is not *Le only means. Automatizing

procersing optrations represents another (Schneider, Dumais, & Shiffrin, 1984) is another. The

use of efficient strategies is still another (Chase & Faicsson, 1982; Cheng, 1985; Hunter, 1977;

Simon, 1975; Siegler & Jenkins, 1989). Several findings from the mental calculation training

study support this latter claim.

First, the training study originally contrasted the effect of practicing the left-toright and

conventional right-to-left methods of multiplication on the assumption that lightning mental

calculators use the most :f."..n.ient strategies (Chase & Ericsson, 1982; Hunter, 1977). The pattern

of early practice results obtained was consistent with this assumption.

Second, analyses of concurrent verbal reports taken from JA and GG as they solved

problems revealed a significant difference in the way in which they implemented left-to-right

strategy. Although their procedures are more similar than different, sharing many common

features including the use of chunking and retrieval structures, the general strategies they applied

on 2x problems clearly differed in terms of the number of processing steps involved. JA's

strategy was clearly more efficient than GG's, particulary in the number of operations that were

devoted to mahtaining intermediate results in memory.

Third, model-based analyses also showed differences in processing complexity between

JA's and GG's 2x strategies. In fact, it was the protocol evidonce tat prompted construction of

process-models of the trainees' procedures. The purpose was to represent their thought processes

in way that the relative efficiency of their computational strategies could be mear ..ed objectively

and precisely.

Briefly, these models were designed with control structures that produced the sequmce of

operations that characterized each trainee's solution procedures across different problems of

varying size. A theoretically important feature of the models was their assumption that both OG
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and JA used retrieval structures to encode and retrieve problem operands an,* intermediate results

in worting memos), during their calculations. 'Because the protocols indicated that most of their

arithmetic operations involved only eleme of operands and intermediate results, both models

assumed that (a) all multiplication and addition operations are carried out on pairs of symbols

representing single digits'', and (b) retrieving individual symbols, nested within hierarchically

organized knowledge representations, carries with it the overhead of traversing the abstract

architecture used to organize and access these symbols. Thus, basic memory search and retrieval

operations that access the inputs for arithmetic operations constitute a major portion of the

processing needed to execute each simple arithmetic operation involved in solving a problem. A

measure of task complexity related to solving a particular problem is obtained by summing the

number of elementary memory operations needed to execute the aritbmetie, rehearsal, or

reformatting operations that a solution algorithm dictates for a specific problem.

Once the trainees' procedures were captured in running programs, the diffeient programs

were given a test set of identical 2x problems. Comparison of the models' performance showed

that JA's method was more efficient than GG's in terms of the number of operations it required to

produce solutions. A more detailed examination of the models' performance as a function of

problem size showed that the relative advantage of JA's strategy varied proportionally with

problem size; JA's strategy was only marginally more efficient than GG's in solving 2 x 2s, but

its margin of superiority increased monotonically with each increase in multiplicand size.

These findings were consistent with the pattern of results shown repeatedly when M's and

GG's solution times were compared at equivalent levels of practice using samples taken be..*wePAI

sessions 100 and 300. GG's aveage solution times were faster elan Let's for all levels of lx

problems, roughly equivalent to JA's times for 2 x 2s, and slower by an increasing magin as

roblem size increased to 2 x 5s.

To test the validity of these models more directly, the same problems that le trainees

received in pracdce were fed into the simulriod programs. Iheir runs produced estimates of task

complexity for each problem of each problem-g.. category. These measures were used to

?Theme first-approximation models make no provisions for either trainee's ability to retrieve solutions to familiar 1 x
2s re encode sr..d operate upon their double-digit operands as unitary quantities. Therefore, despite the encourtging
results obtained using these models as analytic tools. tht.y face further development and testing before they can be
confidently regarded as complete. psychologically valid models of tire trainees' skills.
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predict the trainees', solution times. The results were both encouraging and infumative. Fust,

across several samples both GG's and JA's models could consistently account for about 80% of

the variance in their r,pective solution times. The praameter estimates produced by these

analyses implied that JA took roughly 303 msec per assumed processing operation and 00 about

250 msec, values corresponding to independent estimates of the durations of goal-directed

cognitive operations (Newell, 1990; Simon, 1979).

From this finding, it follows that GG's solution times should be faster than JA's on

problems whose solutions required approximately the same number of operitkw.A. Moreover,

because the models show that GG's solutions for 2 x 3s, 2 x 4s, and 2 x 5s require increasingly

more operations atan JA's solutions, the models predict that his solution times should fall farther

and farther behind JA's as the size of 2x's increases. These predictions fitted the pattern of

results shown repeatedly when JA's and GG's ;solution times were compared. Thus, the model-

based analyses offered an explanation for the differences obsened in trainees' performance.

GG's relative advantage ova JA in processing speed is reflected in his faster solution times on

lx's, but this advantage is negated on the larger 2x problems by the additional processing

operations that his 2x algorithm requires.

To directly test the hypothesis that the differenees in the efficiency of JA's and GG's 2x

computational algorithms might account for this pattern of perfonnance, the following

experiment was perfix med. At the beginning of GG's 501st practice session, JA's method for 2x

calculation was described to him and he was instructed to use this new method in all subsequent

make sessions. In order to compare GG's performance using the two strategies in as controlled

a h ishion as possible, the problems prefented in sessions 401-500 were re-presente0 in sessions

5f4 -600 in the same order and 2ndes their orienal presentation conditions.

Figure 11 plots GG's average solution times for sessions 476-500, sessions in which he was

still using his original 2x algorithm, and sessions 576-600, seisi011s in which he was fairly well

practiced in using JA's bt algorithm. Comparison of the functions shows an improvesnent in

solution times for all problems sizes with practice. The average improvement for lx problems 11,

approximately 7% and represents a baseline against which improvements due to the experimental

manipulation can be measured. Focusing on the times for 2x's, the effects related to switching

strategies are interesting in several respects.

15'
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First, the general pattern of improvement was predicted in advance by the simulation

models' estimates of task complexity; solution times for 2 x 2s, 2 x 33, 2 x 4s, and 2 x 53 showed

decreases of 9%, 25%, 31%, and 40%, respectively. Note that the greatest decreases occur for the

problem sizes on which GG's solution times are faster than AB's (2 x 3'3, 2 x 4's, and 2 x 5'3).

The implication is that GG, left to his own devices, would have required considerably more

practice to achieve the level of performance that instructional intervention has produced. This

result demonstrates how bfonnation obtained by analyzing expert performance can be used to

"enginete human expertise in cognitive skills as well as perceptual skills (Biederman & ShIfrar,

1987).

Second, GG was able to adapt to the new algorithm with surprisingly little difficulq.

Quantitatively, close inspection of GG's 2x learning curves showed a relatively &ma) and

temporary increase in GO's seution times immediately after switching strategies. A small (2%)

and temporary increase in his 2x error rates also occurred at the same point. Qualitatively,

concurrent verbal protocols taken during the first few days of the strategy switch also showed a

corresponding decreoce in the fluency of GG's sequence of operations. In retrospective reports,

he mentioned hav4rg to pay "a little closer attention" to seclueacing his operations on each 2x

trial, which he believed slowed him down. Signifiomtly, both types of protocols revealled that

GG could encode problem operands and intermediate results via his retrieval structures and

execute his pattern-driven computational strategies within the new algorithm without any

apparent difficulty.

Theories of skill acquisition (Fitts ?. Posner, 1967; Schneider & Shiffrin, 1977; Shiffrin&

Schneider, 1977) that emphasize the development of automaticity predict that higS levels of

practice under stable condition. produce relatively inflexible skills. While there is some evidence

for the negative transfer predicted by such theories in the current experiment, the performance

decrement related to GO's switch from a familiar strategy to a novel one is trivial compared to

that shown when the task envhnnment in which subjects had automatized their skills was altered

radically (Experiment 1, Shiffrin & Schneider, 1977). The relative absence of negative transfer is

not entirely surprising, because the high variability built into the trainees' practice environment is

not conducive to the development of automaticity (Schneider, Dumais, & Shiffrin, 1984).

Although it seems Moly that automatization of relatively low-level processes (pattern

recognition, memory retrieval) makes an important contribution to 'A's impressive rafonnance,
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the ease with which he adapted to using a new algorithm indicates a considerable degree of

control and flexibility in his skill. This finding supports Bartlett's (1932) views on expertise and

flexibility. This experiment also shows that the acquisition of expert-level skill is a complex

process involving more than the automatiution of mental operations (Cheng, 19E5) and the

development of skilled memory. Strategy discovery and use play important roles.

4. Methodology: Implications for Theory

The appevach this project uses to analyze expertise and its development departs from the

traditional methods used by experimental psychologists and computer scientists in several

respects. lfr." distinguishing features are described followed by a brief discussion of its advantage

and disadvantages.

First, it analyzes complex, goal-directed behavicr that stretches often over several tens of

seconds. The activities studied are complex in the sense that they require selection and

coordination, particularly serial organization, of a variety of cognitive pmeesses. The intent is to

catalogue as completely as possible the key smictures and processes that coatribute to exceptional

human performance as well as the control structures that orchestrate their operation.

Analysis of subjects' learning and performance is fme-grained. Individuals rather than

groups are studied, and their prfonnance is analyzed on a trial-by-trial basis as they adapt their

activities to the demands of a porticular task environment over long periods of practice. The

danger of blindly averaging over slit jects and trials is that subtle regularities in behavior that

represent precise and flexible adaptation can be hidden.

The analyses are comprehensive. Once again, the intent is to catalogue as completely as

possible the key mechanisms that contribute to =cyclonal human performance and the control

structure(s) that govern their interwtion. Therefore, multiple tasks are used to study subjects'

performance (i.e., variants of the digit-spen task, letter-span, word-span, the Luria Matrix, free

recall, probed recall, etc.) often with multiple methods (verbal protocol analysis, arrimental

hypothesis testing, simulation), using multiple measures (chronornetric measures, accuracy,

verbal reports). Such a strategy is designed to identify specialized subsyftems mediating complex

behavior and to test the range of their application. Also, keeping in miad that the phenomena

under investigation, knowledge and cognitive processes, can only be studied indirectly, the use of

multiple methods is extremely important to ineure construct validity. This multitask,
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multimethod approach assumes that the strategy of converging operations is the best route to the

soundest scientific conclusions.

The obvious disadvantage of the idiographic approach is the difficulty of producing findings

that genezalize across subjects. However, in spite of the relatively few subjects studied under the

rubric of the Skilled Memory Project (by Chase, Ericsson, and Staszewski), cennmem

characteristics consistent with the tenents of SMT have been abstracted frog- differen. expert

subjects from different skill domains. Of course, comprehensive analysis of even a single

subject, let alone several, using multiple methods and measures is inherently expensive in terms

of time and resources.

Hopefully, the foregoing pages show the reader that the advantages of this appraoch to

studying expertise outweighs the costs. In general, rhe advantage of this approach is that it can

yield relatively detailed, coherent local theories of expertise and its development from which

more general theoretical principles can be abstracted. In contrast to much of the previous

research on expertise, this approach follows the methodological advice Newell (1973) urged upon

cognitive psychology for the sake of sustained theoretical plogress. It aims for a comprehensive

understanding of the structures, processes, knowledge that experts employ and the way in which

these elements are organized as integrated, adaptive information-processing systems that produce

goal-directed behavior. Newell (1990) cites the theoretical value of this approach to

understanding the complex information-processing that characterizes intelligent thought.

The longitudinal character of this approach is important because it reveals how intelligent

systems adapt to the demands of particular tasks with experience. This approach has shown how

practice-related changes in knowledge representations and processes produce quantitative and

qualitative changes in behavior. Whereas other approaches to the study of expertise have led to

the inference that acquired knowledge is its foundations, this approach has succeeded in

demonstrating the validity of this claim. Siegler and Jenkins (1989) note how this approach to the

study of learning is particularly useful for understanding the relation between cognitive strategies

and performan-e, La important but relatively neglecied topic. Most importantly, from the

perspective of this project's objectives, this approach has produced new empirical and theoretical

insights into how mime individuals overcome innate impediments to learning and performing

complex cognitive tasks to achieve levels of performance once considered beyond their

capabilities.
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5. Practical Implications

Because this project falls into the categoty jf basic research, its main goal was to produce a

body of theory and data that would add to our scientifc understanding human exp&rtise and its

development. Fundamentally, it has shown that expert knowledge can be analyzed at a relatively

fine grain and has demonstrated the value of such analyses for modelling expen performance and

designing interventions that facilitate the development of evertise. These accomplishments hold

practical implications for the enterprise of "knowledge engineeting."

In the context in which it was introduced (Feigenbaum, 1977), the phase "knowledge

engineering" referred to the development of expert systems by computer scientists studying

artificial intelligence. Researchers and practicioners generally agree that extracting knowledge

from experts so that it can be represented in functional programs is perhaps the most ctucial and

difficult aspect fo building' suck systems (Olson & Reuter, 1987; Waterman, 1986; Winston,

1984). The direct knowledge UtliCtion methods typically used and taught account for this

problem to no small degree. They are only suitt4 to identifying knowledge that an expert can

consciously access and communicate accurately. Much psychological evidence on the flaws of

self-repon measures (Nisbett & Wilson, 1977) and the nature and penetrability of expert

knowlmlge indicates that inherent limitations hamper conventional methods.

This project's successful modeling of aspects of its experts' performance suggests that its

comprehensive approach to knowledge extraction, combining a compLnentary variety of direct

and indirect methods, offers a viable and potentially valuable alternative to the conventional

approach. wn addition, the theoretical accomplishments of this project offer knowledge engineers

a body of knowledge that can be used to guide their efforts in knowledge extraction. To the

extent that this project offers a body of theoretical and tur--thodological principles that computer

scientists can apply, it can help make knowledge engineering less an art (Feigenbaum, 1977) and

more the scientific activity that the term engineering implies.

The fmdings of this project's training studies also suggest that "knowledge engineering"

eitends beyond the field of artificial intelligence to that of instructional design. They show that

cognitive science has the methods to discover and explicitly describe expert processing strategies

and that interventions based on such research can be used to facilitate the development of

expertise, Its description of knowledge snuctures supponing expertise suggests that organized

semantic networks and retrieval structures can be used by educators as targets for instructkm and

learning (Glaser, 1989; Glaser & Bassok, 1990).
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Table 1

tv., *.*,
%)..et ryq.-

, - , ,

Problem Size e odes
4

glIttgine Example_

8
1 X 1 1

37
1 x 2 x 4

895
1 x 3

1,472
1 x 4 x 8

91,4:3
1 x 5 x 7

3...
73

2 x 2 x 38

856
2 x 3 x 52

4,957
2 x 4 x 76

31,265
2 x 5 x 69

71
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Table 3

Trainees' Errors Rates (%)

First Ten Sessions

WEI/ =1,1111111

Problem Slam

Presentation

Oral

IIMINNOMM.M.11111111.

1 xl 1x2 1x3 1x4 lx5 2x2 2x3 2x4 2x5

0 0 10 10 15 25 55 70 90

GO
Visual 0 5 10 0 25 20 35 30 00

Oral 0 0 15 15 25 15 40 41 75

JA
Visual 0 5 6 0 0 34 15 35

Fhal Thirty Sessions

Problem Size

Presentation

Oral

1 x1 1x2 1x3 1x4 1 x5

50 5 0 4
GO

Visual 0 0 2 4 7

Oral 1 3 4 11

JA
Visual 0 5 4 5 6

** t

72

2x2 2x3 2x4 2x5

A;

7 13 15 1 5
.47.1

6 10 13 13 ,

9 13 30 29

5 1 9 16



Table 4

Verbal Protocol: DD's Encoding of a 75-digit Ust

213zi, DD's Report:

0204 OK, first sump was a hslf mils, oh, two, oh, four. I said oh, two, oh, four,
half mile. .

4927 And then, ah, I had bisok-to-back four, thitt's forty-nine twerrirseven, a ten
mile, and I said that two and seven add up to that nine and had that forty-
nine.

5832 Then, ah, flve, dght, throw, two was a ten mile and I just said I got back-to-
back ten miles and then the three and two add up.to that five. I sold OK,
five's the first digit and these add up to it.

1800 And, urn, then the eighteen hundred I just said was a date.

352 And then, um, seven, no, tine, live, two was a mile ttme. I said it's a read
tot mile time and it's an add-tem-up.

642 And six, four, two was a mile time, was an add-'em-up and I Just said, OK,
they're both add4m-ups, but they're Ike totally different. I mean on. is so
much faster than ths other one, but they were both back-to-back miles,
add:ern-ups.

928 And then nino two eight was a two mike.

4658 Then forty-six fifty-eight was a ten mile. and I juit said that was twelve apart
between the forty-six and fiftreight.

4753 And the,'" forty-seven fifty-three was a ten mile and it was six apart, and I
said, OK, I got back-to-back ton miles.

4346 And lbw: sh, four, three, four, six was a mile time, three apart between
forty-thraa and forty aix.

716 Then ah, seven, one, six was a three thousand meter add-'ern-up.

284 Then sh, two eight four wee an age.

444 I had back-b-back fours, k was just four, four, four, was a mile time.

9025 Then nine, oh, two, live was a two mile

0390 and nine treks nine oh was a Om mile. I said, OK ;had nine, three, nine,
three before [ln a proviousiy presented 1st], this is just nine, three, nine, oh.
That was back-b-back two miles.

858 Then the thkri one was a two mile, so I got three hvo miles in a row here. It
v^- fAaht, five, five, eight and it was fror. muds and backwards.

2e5 Then, eh, two, eight five was an age. I said OK I tlatlirtat had two. eight,
four. This is two, eight flve, one tenth of a yea, older.

Then, alt oven, six, two was an aga. I didn't really do anything with that

And thon eight, six, nine was an age. I said OK, It's almost eighty-seven. I

just said OK, I got two badc-to-back ages that I really wasn't crazy about. I

just wafted to rehearba and get tolck to them as fast as possible.

4393 And then the four, three, nine, three was a mile, I said fifty apart.

4548 And then four, eve, four, eight was a mile and I said there was three apart
between those.

73

762

869

0..'



Table 5

Verbal Protocci: DD's Encoding of a 50-digit List

Group DO's

3786 First group, urn, the whcle first four groups of four, it pst went two ages,
mile, mile, two ages, and the miles were similar and the two ages were
similar, so I just wet. set on that. I mean I was in great shape. So ft was
two ages, they were two apart first group.

6307 Then the mile, just a Me over six and a half minutes said.

6281 And the next on*, six, two, six, one. I said, OK. It's faster and Ws sixty-two
sixty-one, and ft's one apart between the sixty-two and skty-one.

8871 And then the last one was eighty-eight, seventy-one. Ws two ages and I
just, I didn't figure any age difference, but I knew that the first age was in
the eighties and my first group was ages in the eighties, so I was OK with ad
of that

420 Then, ah, four-twenty was a mile. I just said four twenty flat, that was easy
inough, a good high school mile.

799 Seven, nine, nine was an age. I said It was almost eighty years old

810 And eight ten was a two mile. I just said it's a really fast two mile.

6938 Then sixty-nine, thirty-eight was a ten mile, and I just said It was up there, it
was like a really slow ten mile.

5802 And then, rh, dfty-eight oh two was another ten mile and I said, OK, it's
almost fifty-eight minutes, it's, Ws a good pace ten mile.

3798 Then uh, thhty-seven ninety-eight was a 10K. it wasn't a legitimate 101(,
but I Just remember saying OK, it's almost thirty-eight minutes, if you think
about it Ike that.

063 And then ah..., oh, six, three was an age. I said it was, ah, Ike right around
redrement age.

142 And one forty-two was a half mile. I said it right around world record half

888 And then eight, eight, six was an age. I didn't really do much with that,
because then all of a sudden I had back-to-back sixes, so I Inked those two

4),
6933 and it was sixty-nine, thirty-Ives, another ten mile.



Table 6

DD's Semantic Dpding ati2Lrekgpi

Coding Structure

Three-digit grkupg

Time 3:52
Time + Demal 56.4
Age + Decimal 79,9
"0" + Time 049
"0" + Age 063
Misc Pattern 111

bans_vi

Four-digit groups

Time 49:27
Time + Decimal 9:02.5
Age + Age 8785
"0" + Three-digit code 02:04
Date 1955
Misc Pattern 9876
Misc Pattern + Decimal 963.2

7t



Table 7

gitmigu,

1/4m
1/2m
3/4m
lm
3k
2m
3m
10k
10m
Date
Age
Misc.

76

497
142
315
420
716
920
1430
2904
4753
1800
284
987



Table-8

DD's Serial Recall Performance as a Function of List Type

Striated

lawn a9.8
tID 0.9
t 1.095"A

ale
4.4

7.1n-1

1 an 29.1 419
SD

,
13.5 19.4

Medlin 2i.0 48.0
t 4.09r.

Reed Time

Mon 43.3 68.7
87", 27.5 51.5
1/isoLn 34.3 54.e

1.9729

Tots" Time

Mew 72.4 115.8
8D 37.4 83.1
Median 57.5 101.5
t 2.87r

Note. Al tests one-tamed, dt s 48. 'Ix .05; "Vc .01; "'Ix .001. These reported In seconds.

77



Table 9

Go's Stratsgiss for' x 2s

Condition identity R.tri. vat 9sming gaig&tion

won RT 230 303 430 639

Ond
Proportion of TM' 11.1 23.2 56.0 5.1

Moan RT 527 631 728 1014

Visual
.

Proportion of Thais 11.1 24.3 61.0 3.8

No*: Times ghen in millseconds.

7 8
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